2.1 Monomials

Refer to first half of the Handout: "Algebraic Expressions", for definitions.

A **MONOMIAL** is the product of a variable with a positive integer exponent and real number.

LIKE TERMS are terms with identical variables and identical exponents (not coefficients)

The **DEGREE** of a monomial is the sum of all its exponents.

1	1	3x	$\sqrt{5a}$		$-22a^{5}b^{7}$	
$\overline{b^5}$	$\frac{1}{2}$	7		$12a^{\frac{1}{2}}$		$2y^{-5}$

Ex 1: Monomial Vs Not a Monomial

Ex 2: Are the following pairs like terms?

- 1) 2a, -2a
- 8) $11st^2u^3$, $9u^3t^2s$
- 2) 4b, 6ba
- $9)\frac{2}{5}$, -8
- 3) 3x, $-7x^2$
- 10) 2a, 3ab
- 4) abc, -abc

- 5) 3b⁰, 5
- 11)3x, $3x^0$ $12)2ax^2$, ax

6) 6x, $\frac{4}{x}$

- $13)2a^2x^3$, $-2a^2x^3$
- 7) $3x^2y$, $4xy^2$
- 14) Is $2x^{-1}$ a monomial?

Ex 3: Determine the degree of each monomial

Monomial	5x ²	3y ¹²	-7	6xy ⁴	3a³b³
Degree					

We can use Algi-tiles to represent single variable polynomials: Introducing the Tiles

+1 Tile

-1 Tile

+x Bar

-x Bar

+x² Square

- x² Square

Note that 2 opposites of the same type cancel each other out when added.

Practice: Page 50 # 1, 2, 3

